I specialize in analyzing mathematical formulations of deep neural networks, gaining insights into their architecture and representation. This understanding enables me to develop novel algorithms that tackle both theoretical challenges and practical applications, driving advancements in artificial intelligence.
Achievements: Two patents in progress.
Press Coverage: VentureBeat – Tenyx aims to fix LLMs' catastrophic forgetting problem.
Achievements: First open-source model to outperform GPT-4 on reasoning tasks.
Press Coverage: VentureBeat – AI startup Tenyx's fine-tuned open-source Llama 3 model outperforms GPT-4.
Effect detection via convex hull similarity, Pending
R. Cosentino, S. Shekkizhar, Y. Salomon
Filed, January 2025, US 63 75 26 27
Gradient-free optimization of large language models, Pending
R. Cosentino, S. Shekkizhar
Filed, January 2025, US 63 752 618
Knowledge base for voice large language model applications, Pending
S. Shekkizhar, R. Cosentino,
Filed, January 2025, US 63 752 613
Domain manifold based model compression, Pending
R. Cosentino, D. Kalajdzievski, S. Shekkizhar, A. Earle
Filed, October 2024, US 189 05 761
Training a target activation sparsity in a neural network, Pending
D. Kalajdzievski, R. Cosentino, S. Shekkizhar, A. Earle,
Filed, August 2024, US 188 02 235
Endpoint detection, Pending
A. Earle, A. Ziaei, J. Weissenbeger, R. Cosentino
Filed, April 2024, US 186 36 671
Training multi-task neural network while minimizing catastrophic forgetting
R. Cosentino, A. Earle
Issued, US Patent 11 922 324
Fine-tuning Machine Learning Model while retaining accumulating knowledge, Pending
R. Cosentino, S. Shekkizhar, A. Earle, D. Kalajdzievski, J. Weissenbeger, I. Arel
Filed, October 2023, US 184 966 98
Reasoning in Large Language Models: A Geometric Perspective,
ArXiv, 2024, R. Cosentino*, S. Shekkizhar* (* equal contrib)
Characterizing Large Language Model Geometry Helps Solves Toxicity Detection and Generation,
ICML, 2023, R. Balestriero*, R. Cosentino*, S. Shekkizhar* (* equal contrib)
The Geometry of Self-supervised Learning Models and its Impact on Transfer Learning,
ArXiv, 2022, R. Cosentino*, S. Shekkizhar*, M. Soltanolkotabi, S. Avestimehr, A. Ortega (* equal contrib)
Toward a Geometrical Understanding of Self-supervised Contrastive Learning,
ArXiv, 2022, R. Cosentino, A. Sengupta, S. Avestimehr, M. Soltanolkotabi, A. Ortega, T. Willke, M. Tepper
Spatial Transformer K-means,
Asilomar, 2022, R. Cosentino, R. Balestriero, Y. Bahroun, A. Sengupta, R. Baraniuk, B. Aazhang
Manifold Approximating Graph Interpolation of Cardiac Local Activation Time,
IEEE Trans. on Biomedical Eng., 2022, Jennifer Hellar, Romain Cosentino, Mathews M John, Allison Post, Skylar Buchan, Mehdi Razavi, Behnaam Aazhang
Deep Autoencoders: From Understanding to Generalization Guarantees,
MSML, 2021, R. Cosentino, R. Balestriero, R. Baraniuk, B. Aazhang
Graph-Based Interpolation of Local Activation Time on the Cardiac Surface (Best Student Paper Award),
Asilomar, 2021, Jennifer Hellar, Romain Cosentino, Mathews M John, Allison Post, Skylar Buchan, Mehdi Razavi, Behnaam Aazhang
A novel convolutional neural network for reconstructing surface electrocardiograms from intracardiac electrograms and vice versa,
AI in Medicine, 2021, A. Banta, R. Cosentino, M. John, A. Post, S. Buchan, M. Razavi, B. Aazhang
Learnable Group Transform,
ICML, 2020, R. Cosentino, B. Aazhang
Universal Frame Thresholding,
IEEE Sig., 2020, R. Cosentino, R. Balestriero, R. Baraniuk, B. Aazhang
Sparse Multi-Family Deep Scattering Network,
ArXiv, 2020, R. Cosentino, R. Balestriero
The Geometry of Deep Networks: Power Diagram Subdivision,
NeuriPS, 2019, R. Balestriero, R. Cosentino, B. Aazhang, R. Baraniuk
Spline Filters For End-to-end Deep Learning,
ICML, 2018, R. Balestriero*, R. Cosentino*, H. Glotin, R. Baraniuk (* equal contrib)
Best Basis Selection Using Sparsity Driven Multi-Family Wavelet Transform,
GlobalSIP, 2016, R. Cosentino, R. Balestriero, B. Aazhang